

dlFindDuplicates
© 2014 Jos De Laender <jos@de-laender.be>

Jos De Laender

1-september-2014

Manual for using dlFindDuplicates

Inhoud
1 Glossary .. 2

2 Introduction .. 2

3 Getting and installing dlFindDuplicates .. 3

3.1 Windows .. 3

3.2 Linux .. 3

3.2.1 Prerequisites ... 3

3.2.2 Fetching and building .. 3

4 Using dlFindDuplicates .. 4

4.1 Regular use ... 4

4.2 Use of the script interface .. 5

4.2.1 Example 1 : select newest files from a group > 10MB 5

4.2.2 Example 2 : Select files that contain ‘Build’ in the path name 6

5 Development notes.. 7

5.1 Building for Windows ... 7

1 Glossary

 http://en.wikipedia.org/wiki/Hard_link : In computing, a hard link is a directory

entry that associates a name with a file on a file system. The term is used in

file systems which allow multiple hard links to be created for the same file.

This has the effect of creating multiple names for the same file, causing an

aliasing effect: e.g. if the file is opened by one of its names, and changes are

made to its content, then these changes will also be visible when the file is

opened by an alternative name.

 http://en.wikipedia.org/wiki/Lua_(programming_language) : is a lightweight

multi-paradigm programming language designed as a scripting language. A

Lua interpreter is embedded in dlFindDuplicates, i.e. you don’t need to have it

installed.

 http://en.wikipedia.org/wiki/MD5 : A MD5 checksum or hash sum is a

‘signature’ that is calculated over data, in the first place to protect it against

unwanted alterations. In dlFindDuplicates it is used to determine a unique (*)

signature of the file.

(*) With high probability. Files can be constructed to be different and still have

the same MD5.

2 Introduction

Due to copying around files on your disk, in a desperate attempt to organize them,

you often end up with files that are just duplicates in different directories. Here comes

dlFindDuplicates at rescue. It does so in 3 consecutive steps :

Step 1 : Search the duplicate files on selected directories. Duplicates are

sieved in following order :

1. Files that are hard linked to each other are per definition the same, and

no further processing power is spoiled on finding out they are equal.

2. Filesize. Files that are unequal in length cannot be the same.

3. MD5 Sum over the first megabyte of data, in order to break fast the tie

on files of equal length.

4. MD5 Sum over the whole file.

Step 2 : Present each group of equal files as input to a Lua script that

determines which files of the group should be selected or not. This offers the

advanced user an enormous amount of flexibility in selecting which files he

wants to action upon. The standard user is offered a number of predefined Lua

scripts (‘Select oldest’, ‘Select newest’ …) or can select manually.

Step 3 : Action on the selected files in 3 possible ways :

1. Delete the selected files.

http://en.wikipedia.org/wiki/Hard_link
http://en.wikipedia.org/wiki/Lua_%28programming_language%29
http://en.wikipedia.org/wiki/MD5

2. Hard link the selected files. This way the files can stay in 2 different

directories (i.e. photos per year and photos per theme) yet taking only

the disk space of one file. Note that hard linking is only possible on the

same disk partition.

3. Move the selected files, which is rather pointless, except if you want to

be very cautious and first have a second look to the moved files before

ultimately deleting them.

3 Getting and installing dlFindDuplicates

3.1 Windows

Note that at the time of writing only Windows 64 bits executables are distributed !

Visit http://sourceforge.net/projects/dlfindduplicates/files and grasp the

dlFindDuplicates_Installer.exe of the latest version. Install it as any other Windows

program, i.e. click-click-click.

In order to fulfill the GPL license requirements, I will at the end describe how to build

the Windows version, but you probably will never do that.

3.2 Linux

I’m working on XUbuntu 14.04. I assume that the description will be reasonably valid

for other distributions as well. All feedback welcome.

Note : Building is only tested on a 64 bit linux machine, but there’s no a priori reason

why it would not work on a 32 bit machine. All feedback welcome.

3.2.1 Prerequisites

 Python 2.7.6

 gcc/g++ 4.8.1 or higher.

 Qt (development version) 4.8.6 or higher. Not Qt5 tested.

 liblua (development version) 5.2.0 or higher.

 mercurial

3.2.2 Fetching and building

Go to an appropriate directory and issue following commands :

 hg clone http://hg.code.sf.net/p/dlfindduplicates/code dlFindDuplicates

 cd dlFindDuplicates

 ./scons.py –Q --dlBuildConfFile=BuildConfs/L64_L64_Debug_WithOMP.py

 sudo ./scons.py –Q --dlBuildConfFile=BuildConfs/L64_L64_Debug_WithOMP.py install

http://sourceforge.net/projects/dlfindduplicates/files

4 Using dlFindDuplicates

4.1 Regular use

Start it the usual way using the menu entry (with administrator / root rights in case the

files you want to access require so). I will explain main functionalities via the

screenshot :

 Select here the directories you want to search for duplicates

 Start (and if needed cancel) the search for duplicates. The

checkbox allows you to exclude groups of files that are the

same because of hard linked out of the result.

 Select one of the Lua scripts that generates a selection

amongst the duplicate files. “Newest” (a standard available

script) for instance would select the newest files, in order to

keep the original. The button reloads the directory that

contains the scripts (*) such that you can add your own

scripts as well.

 Launch the indicated action (delete, move (**), link) on the

selected files.

 Results found. They can be sorted on filename, directory

name, size, modification time and key (***). Also you can do

here manual selections on top of what the script did already

for you. The alternating colors represent a group of files that

are duplicates.

(*) The scripts must have ‘.lua’ extension and located under

 Windows : User => UserName => .dlFindDuplicates => SelectScripts

 Linux : ~/.dlFindDuplicates/SelectScripts

(**) Moving is done to :

 Window : User => UserName => .dlFindDuplicates => TimeStamp_Moved

 Linux : ~/.dlFindDuplicates/TimeStamp_Moved

(***) The key is of the form X_Y_Z where

 X : size of the file

 Y : MD5 over the first MB, or “X” in case it was not calculated.

 Z : MD5 over the full file, or “X” in case it was not calculated.

4.2 Use of the script interface

In order to select within groups of equal files, a Lua scripting interface is used. The

scripts must have ‘.lua’ extension and must be located under

 Windows : User => UserName => .dlFindDuplicates => SelectScripts

 Linux : ~/.dlFindDuplicates/SelectScripts

For the full capabilities of Lua, I will refer to www.lua.org, however the simple

examples (with the explanation) will likely be a good start for everyday use.

4.2.1 Example 1 : select newest files from a group > 10MB

4.2.1.1 Code

--

-- dlFindDuplicates

--

-- Copyright (C) 2014 Jos De Laender <jos@de-laender.be>

--

-- This file is part of dlFindDuplicates.

--

-- License : see file "License".

--

Title = "Newest > 10MB"

Description = "Select newest from group, but leave < 10MB untouched."

function Select(Files,Times,Size)

 -- Files : table of filenames.

 -- Times : corresponding table of modification times.

 -- Size : filesize.

 local Selected = {}

 Pivot = 1

 for i=2,#Files do

 if Times[i] < Times[Pivot] then

 Pivot = i

 end

 end

 for i=1,#Files do

 Selected[i] = (i ~= Pivot) and (Size > 10485760)

 end

 return Selected

end

http://www.lua.org/

4.2.1.2 Explanation

 Title and Description are mandatory global variables and that will be used to

display as text and tooltip in the selection box.

 Function Select is a mandatory function and that should return the selected

files as a table of Boolean values. You can add any further function or variable

as you want.

 The Select function takes 2 tables and an integer as argument

o Files is a table with the full path filenames of the files in a group of

equals. Hence the size of it is the number of files in the group.

o Times is a table with modification times, expressed in 'unix time'

(basically the number of seconds since January 1, 1970) of the

corresponding file in the Files table.

o Size is an integer argument representing the size of the files (which is

per definition the same for all in the group).

 The remainder is a small algorithm to select on the basis of the newest files in

a group but that are larger than 1MB. You should read the Lua manual, but if

you know that tables are indexed from 1 on (not 0 based !) and that #Value is

the length of a table, you probably can just read it like this.

 The Select function must return a table, equal in size to the Files and Times

table, and that has on each position a Boolean value that says if the file should

be selected or not. In order to be valid, at least one file in the group needs to

stay unselected.

4.2.2 Example 2 : Select files that contain ‘Build’ in the path name

4.2.2.1 Code

--

-- dlFindDuplicates

--

-- Copyright (C) 2014 Jos De Laender <jos@de-laender.be>

--

-- This file is part of dlFindDuplicates.

--

-- License : see file "License".

--

Title = "Contains 'Build'"

Description = "Select those containing 'Buid' in path"

function Select(Files,Times,Size)

 -- Files : table of filenames.

 -- Times : corresponding table of modification times.

 -- Size : filesize.

 local Selected = {}

 for i=1,#Files do

 Selected[i] = (nil ~= string.find(Files[i],"Build"))

http://en.wikipedia.org/wiki/Unix_time

 end

 AllSelected = true

 for i=1,#Files do

 if not Selected[i] then

 AllSelected = false

 break

 end

 end

 if AllSelected then

 Selected[1] = false

 end

 return Selected

end

4.2.2.2 Explanation

This example is only added to demonstrate that you can work also on the basis of the

filenames. Otherwise it just contains the same elements as the first example. Mind

the code at the end to verify that at least one of the files stays unchecked.

5 Development notes

5.1 Building for Windows

This chapter is here to make sure that, in spirit of the GPL, you can build the

Windows executable yourself. Normally, you would however grasp it just from the

site.

Building is done using the mxe cross-compiling environment. Get the mxe code as

described on the mxe site. In that directory you issue the command :

 make MXE_TARGETS=x86_64-w64-mingw32.static

This will build a complete cross compilation environment. Now you go to an

appropriate directory and issue following commands :

 hg clone http://hg.code.sf.net/p/dlfindduplicates/code dlFindDuplicates

 cd dlFindDuplicates

Edit the file ‘Buildconfs/L64_W64_Debug_WithOMP.py’ such that the

DL_MXE_PATH variable is pointing to the the mxe directory where you made the

cross-build environment.

 ./scons.py –Q --dlBuildConfFile=BuildConfs/L64_W64_Debug_WithOMP.py

This will build now the executable, as well as the installer.

http://mxe.cc/
http://mxe.cc/
http://mxe.cc/

